

Lecture 19.

More on normal Random Variables.

Recall from yesterday that $X = N(\mu, \sigma^2)$ is normally distributed with parameters μ, σ^2 iff X has a probability density function given by

$$f_X(x) = \frac{e^{-(x-\mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}.$$

We showed yesterday that $\int_{-\infty}^{\infty} f_X(x)dx = 1$, even though $f_X(x)$ has no antiderivative.

Prop: Let $X = N(\mu, \sigma^2)$ be a normal random var. For any $a, b \in \mathbb{R}$, $a \neq 0$, $Y = aX + b$ is normal.

Pf: Let $F_Y(x)$ be the cumulative distribution function of Y . Then

$$\begin{aligned} F_Y(x) &= P(Y \leq x) = P(aX + b \leq x) \\ &= P\left(X \leq \frac{x-b}{a}\right) \\ &= F_X\left(\frac{x-b}{a}\right). \end{aligned}$$

Since $F_y(x) = F_x\left(\frac{x-b}{a}\right)$
 we can differentiate both sides to get

$$f_y(x) = f_x\left(\frac{x-b}{a}\right) \frac{1}{a}.$$

Since $f_x(x) = \frac{e^{-(x-\mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}$, we have

$$\begin{aligned} f_y(x) &= \frac{e^{-(\frac{x-b}{a}-\mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}} \\ &= \frac{e^{-(x-b-a\mu)^2/2\sigma^2 a^2}}{\sigma\sqrt{2\pi}} \\ &= \frac{e^{-(x-(a\mu+b))^2/2(\sigma a)^2}}{\sigma a\sqrt{2\pi}} \end{aligned}$$

So $Y = N(a\mu+b, (\sigma a)^2)$. III.

Definition: $Z = N(0, 1)$ is called the Standard normal random variable.

Corollary: Let $X = N(\mu, \sigma^2)$. Then $\frac{X-\mu}{\sigma}$ is standard.

Pf: $Y = \frac{X-\mu}{\sigma} = \left(\frac{1}{\sigma}\right)X + \left(\frac{-\mu}{\sigma}\right)$.

So $Y = N\left(\frac{\mu}{\sigma} - \frac{\mu}{\sigma}, \left(\sigma \cdot \frac{1}{\sigma}\right)^2\right) = N(0, 1)$. \square

See text for variabzation that, for $Z=N(0, 1)$,

$$E(Z) = 0$$

$$\text{Var}(Z) = 1.$$

It follows that if $X = \mu + \sigma Z = N(\mu, \sigma^2)$ is a normal random var, then.

$$E(X) = \mu.$$

$$\text{Var}(X) = \sigma^2.$$

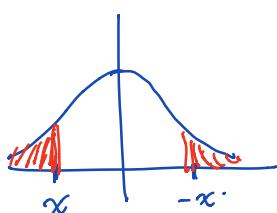
For $Z=N(0, 1)$ we denote the CDF of Z

as $\Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{\pi}} dy.$

Claim: $\forall x, \Phi(-x) = 1 - \Phi(x).$

Pf: Since $f_Z(x)$ is symmetric about 0, i.e.

$$f_Z(x) = f_Z(-x), \text{ we have}$$



$$\begin{aligned} P(Z \leq x) &= P(Z > -x) \quad \forall x \\ &= 1 - P(Z \leq -x) \end{aligned}$$

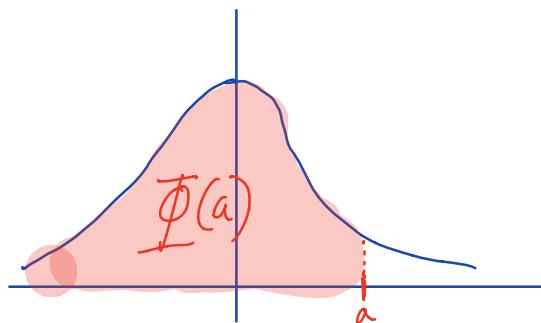
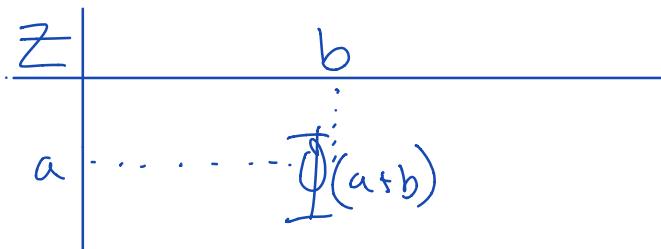
$$\text{so } P(Z \leq x) + P(Z \leq -x) = 1.$$

$$\text{i.e. } \Phi(x) + \Phi(-x) = 1. \quad \checkmark$$

Suppose now that $X \sim N(\mu, \sigma^2)$ is a normal RV. For any $x \in \mathbb{R}$ we have that

$$\begin{aligned} F_X(x) &= P(X \leq x) \\ &= P\left(\underbrace{\frac{X-\mu}{\sigma}}_{N(0,1)} \leq \frac{x-\mu}{\sigma}\right) \\ &= P(Z \leq \frac{x-\mu}{\sigma}). \\ &= \Phi\left(\frac{x-\mu}{\sigma}\right). \end{aligned}$$

Therefore, even though f_X has no antideriv, we can still compute/approximate $F_X(a)$ using "Z-score tables."



Ex:

	0.00	0.01	0.02	0.03
0.0	0.5	0.504		
0.1	0.539			
0.2				
0.3				
0.4				

A-8 APPENDIX A Statistical Tables and Charts

$$\Phi(z) = P(Z \leq z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du$$

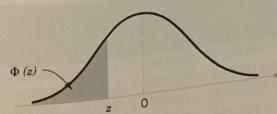


TABLE III Cumulative Standard Normal Distribution

<i>z</i>	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-3.9	0.000033	0.000034	0.000036	0.000037	0.000039	0.000041	0.000042	0.000044	0.000046	0.000048
-3.8	0.000050	0.000052	0.000054	0.000057	0.000059	0.000062	0.000064	0.000067	0.000069	0.000072
-3.7	0.000075	0.000078	0.000082	0.000085	0.000088	0.000092	0.000096	0.000100	0.000104	0.000108
-3.6	0.000112	0.000117	0.000121	0.000126	0.000131	0.000136	0.000142	0.000147	0.000153	0.000159
-3.5	0.000165	0.000172	0.000179	0.000185	0.000193	0.000200	0.000208	0.000216	0.000224	0.000233
-3.4	0.000242	0.000251	0.000260	0.000270	0.000280	0.000291	0.000302	0.000313	0.000325	0.000337
-3.3	0.000350	0.000362	0.000376	0.000390	0.000404	0.000419	0.000434	0.000450	0.000467	0.000483
-3.2	0.000501	0.000519	0.000538	0.000557	0.000577	0.000598	0.000619	0.000641	0.000664	0.000687
-3.1	0.000711	0.000736	0.000762	0.000789	0.000816	0.000845	0.000874	0.000904	0.000935	0.000968
-3.0	0.001001	0.001035	0.001070	0.001107	0.001144	0.001183	0.001223	0.001264	0.001306	0.001350
-2.9	0.001395	0.001441	0.001489	0.001538	0.001589	0.001641	0.001695	0.001750	0.001807	0.001866
-2.8	0.001926	0.001988	0.002052	0.002118	0.002186	0.002256	0.002327	0.002401	0.002477	0.002555
-2.7	0.002635	0.002718	0.002803	0.002890	0.002980	0.003072	0.003167	0.003264	0.003364	0.003467
-2.6	0.003573	0.003681	0.003793	0.003907	0.004025	0.004145	0.004269	0.004396	0.004527	0.004661
-2.5	0.004799	0.004940	0.005085	0.005234	0.005386	0.005543	0.005703	0.005868	0.006037	0.006210
-2.4	0.006387	0.006569	0.006756	0.006947	0.007143	0.007344	0.007549	0.007760	0.007976	0.008198
-2.3	0.008424	0.008656	0.008894	0.009137	0.009387	0.009642	0.009903	0.010170	0.010444	0.010724
-2.2	0.011011	0.011304	0.011604	0.011911	0.012244	0.012545	0.012874	0.013209	0.013553	0.013903
-2.1	0.014262	0.014629	0.015003	0.015386	0.015778	0.016177	0.016586	0.017003	0.017429	0.017864
-2.0	0.018309	0.018763	0.019226	0.019699	0.020182	0.020675	0.021178	0.021692	0.022216	0.022750
-1.9	0.023295	0.023852	0.024419	0.024998	0.025588	0.026190	0.026803	0.027429	0.028067	0.028717
-1.8	0.029379	0.030054	0.030742	0.031443	0.032157	0.032884	0.033625	0.034379	0.035148	0.035930
-1.7	0.036727	0.037538	0.038364	0.039204	0.040059	0.040929	0.041815	0.042716	0.043633	0.044565
-1.6	0.045514	0.046479	0.047460	0.048457	0.049471	0.050503	0.051551	0.052616	0.053699	0.054799
-1.5	0.055917	0.057053	0.058208	0.059380	0.060571	0.061780	0.063008	0.064256	0.065522	0.066807
-1.4	0.068112	0.069437	0.070781	0.072145	0.073529	0.074934	0.076359	0.077804	0.079270	0.080757
-1.3	0.082264	0.083793	0.085343	0.086915	0.088508	0.090123	0.091759	0.093418	0.095098	0.096801
-1.2	0.098525	0.100273	0.102042	0.103835	0.105650	0.107488	0.109349	0.111233	0.113140	0.115070
-1.1	0.117023	0.119000	0.121001	0.123024	0.125072	0.127143	0.129238	0.131357	0.133500	0.135666
-1.0	0.137857	0.140071	0.142310	0.144572	0.146859	0.149170	0.151505	0.153864	0.156248	0.158655
-0.9	0.161087	0.163543	0.166023	0.168528	0.171056	0.173609	0.176185	0.178786	0.181411	0.184060
-0.8	0.186733	0.189430	0.192150	0.194894	0.197662	0.200454	0.203269	0.206108	0.208970	0.211855
-0.7	0.214764	0.217695	0.220650	0.223627	0.226627	0.229650	0.232695	0.235762	0.238852	0.241964
-0.6	0.245097	0.248252	0.251429	0.254627	0.257846	0.261086	0.264347	0.267629	0.270931	0.274253
-0.5	0.277595	0.280957	0.284339	0.287740	0.291160	0.294599	0.298056	0.301532	0.305026	0.308558
-0.4	0.312067	0.315614	0.319178	0.322758	0.326355	0.329969	0.333598	0.337243	0.340903	0.344571
-0.3	0.348268	0.351973	0.355691	0.359424	0.363169	0.366928	0.370700	0.374484	0.378281	0.38208
-0.2	0.385908	0.389739	0.393580	0.397432	0.401294	0.405165	0.409046	0.412936	0.416834	0.4207
-0.1	0.424655	0.428576	0.432505	0.436441	0.440382	0.444330	0.448283	0.452242	0.456205	0.4601
0.0	0.464144	0.468119	0.472097	0.476078	0.480061	0.484047	0.488033	0.492022	0.496011	0.5000

Example of a table of Z-scores

Note: The Casio FX 991ms can compute Z-scores for you.

See the following video tutorial
that I just googled:

<https://youtu.be/Ugdngb1jy7s>

Example: Suppose $X = N(3, 9)$.

Find $P(2 \leq X \leq 5)$.

Recall: For any continuous RV, X ,

$$P(a \leq X \leq b) = F_x(b) - F_x(a).$$

$$\text{So } P(2 \leq X \leq 5) = F_x(5) - F_x(2)$$

$$= \Phi\left(\frac{5-3}{3}\right) - \Phi\left(\frac{2-3}{3}\right)$$

$$= \Phi\left(\frac{2}{3}\right) - \Phi\left(-\frac{1}{3}\right)$$

$$= \Phi\left(\frac{2}{3}\right) - \left(1 - \Phi\left(\frac{1}{3}\right)\right).$$

look up/use calculator

$$\approx 0.3779.$$

Ex: Let $X = N(3, 9)$. Find a symmetric interval I around $\mu = 3$ such that $P(X \in I) = 0.99$.

Solution: We want to find some value $t \geq 0$ such that $P(X \in [3-t, 3+t]) = 0.99$.

i.e. $P(3-t \leq X \leq 3+t) = 0.99$.

So

$$\begin{aligned} 0.99 &= F_X(3+t) - F_X(3-t) \\ &= \underline{\Phi}\left(\frac{3+t-3}{3}\right) - \underline{\Phi}\left(\frac{3-t-3}{3}\right) \\ &= \underline{\Phi}\left(\frac{t}{3}\right) - \underline{\Phi}\left(-\frac{t}{3}\right) \\ &= \underline{\Phi}\left(\frac{t}{3}\right) - \left(1 - \underline{\Phi}\left(\frac{t}{3}\right)\right) \end{aligned}$$

$$0.99 = 2 \underline{\Phi}\left(\frac{t}{3}\right) - 1.$$

2.575.

So $\underline{\Phi}\left(\frac{t}{3}\right) = \frac{1.99}{2} = 0.995$.

Consulting the Z-score table,

$$\underline{\Phi}(2.575) \approx 0.995,$$

so set $\frac{t}{3} = 2.575 \Rightarrow \boxed{t = 7.725}$.

so $I = [-4.725, 10.725]$.

~~77~~